Answer : The number of moles of water are, [tex]3.6\times 10^{23}[/tex]
Explanation : Given,
Mass of [tex]O_2[/tex] = 19.2 g
Molar mass of [tex]O_2[/tex] = 32 g/mol
The balanced chemical reaction will be:
[tex]H_2+2O_2\rightarrow 2H_2O[/tex]
First we have to calculate the moles of [tex]O_2[/tex].
[tex]\text{Moles of }O_2=\frac{\text{Mass of }O_2}{\text{Molar mass of }O_2}[/tex]
[tex]\text{Moles of }O_2=\frac{19.2g}{32g/mol}=0.6mol[/tex]
Now we have to calculate the moles of [tex]H_2O[/tex].
From the balanced chemical reaction, we conclude that:
As, 2 moles of [tex]O_2[/tex] react to give 2 moles of [tex]H_2O[/tex]
So, 0.6 moles of [tex]O_2[/tex] react to give 0.6 moles of [tex]H_2O[/tex]
Now we have to calculate the number of moles of [tex]H_2O[/tex].
As, 1 mole of [tex]H_2O[/tex] molecule occupies [tex]6.022\times 10^{23}[/tex] molecules of [tex]H_2O[/tex]
So, 0.6 mole of [tex]H_2O[/tex] molecule occupies [tex]0.6\times 6.022\times 10^{23}=3.6\times 10^{23}[/tex] molecules of [tex]H_2O[/tex]
Therefore, the number of moles of water are, [tex]3.6\times 10^{23}[/tex]