Segments AP and BP have the same length. If the coordinates of A and P are (-1,0) and (4,12), respectively, which could be the coordinates of B?


I. (3/2, 6)

II. (9, 24)

III. (-8,7)


A) I and II only

B) II and III only

C) II only

D) III only

Respuesta :

Answer:

B) II and III only

Step-by-step explanation:

Coordinates of A = (-1,0)

Coordinates of P =(4,12)

Let (x,y) be the coordinates of B

Distance formula : =[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

AP = BP

[tex]\sqrt{(4+1)^2+(12-0)^2}=\sqrt{(4-x)^2+(12-y)^2}[/tex]

[tex](4+1)^2+(12-0)^2=(4-x)^2+(12-y)^2[/tex]

[tex]169=16+x^2-8x+144+y^2-24y[/tex]

[tex]x^2-8x+y^2-24y-9=0[/tex]

I)(3/2,6)

[tex](\frac{3}{2})^2-8(\frac{3}{2})+6^2-24(6)-9=0\\-126.75 \neq 0[/tex]

II)(9,24)

[tex](9)^2-8(9)+(24)^2-24(24)-9=0[/tex]

0= 0

C)(-8,7)

[tex](-8)^2-8(-8)+(7)^2-24(7)-9=0[/tex]

0=0

So, II and III could be the coordinates of B

So Option B is true

II) II and III only