Respuesta :

Answer:

  • [tex]z = 0[/tex]; x doesn't have a solution
  • [tex]z\neq 0[/tex]; [tex]x = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]

Step-by-step explanation:

Given

[tex]z(14x -2y)=7[/tex]

Required;

Solve for x, when

  • [tex]z = 0[/tex]
  • [tex]z\neq 0[/tex]

[tex]z(14x -2y)=7[/tex]

Divide both sides by z

[tex]\frac{z(14x -2y)}{z} = \frac{7}{z}[/tex]

[tex]14x -2y = \frac{7}{z}[/tex]

Add 2y to both sides

[tex]14x -2y + 2y= \frac{7}{z} + 2y[/tex]

[tex]14x = \frac{7}{z} + 2y[/tex]

Divide both sides by 14

[tex]\frac{14x}{14} = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]

[tex]x = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]

The above expression is the value of x when [tex]z\neq 0[/tex]

To solve for when z = 0, we simply substitute 0 for z

[tex]x = \frac{1}{14}(\frac{7}{z} + 2y)[/tex]

[tex]x = \frac{1}{14}(\frac{7}{0} + 2y)[/tex]

0 cant't divide any number; hence, from the above expression we conclude that

[tex]x = \ u\ n\ d\ e \ f\ i \ n\ e\ d[/tex]

or

x doesn't have a solution