Respuesta :

Answer:

Choice A

Step-by-step explanation:

First, let's simplify the equation. We get [tex]\frac{3^{-3}m^{6} n^{-3}}{6mn^{-2} }[/tex] . Then, we can simplify. We now have [tex]\frac{3^{-3}m^{5} }{6n}[/tex] . To get rid of the negative exponent, we multiply the top and bottom by 3^3 to get [tex]\frac{m^{2} }{6nx3^{3} }[/tex]. Note that the x in the denominator stands for multiplication. 3^3 = 27, so we have [tex]\frac{m^{5} }{6n(27)} = \frac{m^{5} }{162n}[/tex]

Answer:

m^5/ 162 n

Step-by-step explanation:

( 3 m^-2 n) ^-3 / (6mn^-2)

We know a^ -b = 1/ a^b

1 / ( 3 m^-2 n) ^3 *(6mn^-2)

Distribute the power of 3

1 / ( 3^3 m^ -2 ^ 3 n^3) * ( 6m n^-2)

We know a^ b^ c = a^ ( b*c)

1 / ( 27 m^( -2 * 3) n^3) * ( 6m n^-2)

1 / ( 27 m^( -6) n^3) * ( 6m n^-2)

We know a^b * a^c = a^ ( b+c)

1 / ( 27*6 m^( -6+1) n^(3-2))

1/ (162 m^ -5 n^1)

We know a^ -b = 1/ a^b

m^5/ 162 n