Respuesta :
Answer:
[tex]B.\ x^3 - 2x^2 - 4x + 1[/tex]
Step-by-step explanation:
Given
Polynomials A to D
Divisor: x - 2
Required
Which of polynomial A - D has a remainder of -7
We start by equating the divisor to 0
[tex]x - 2 = 0[/tex]
Make x the subject of formula
[tex]x = 2[/tex]
Next is to substitute 2 for x in the polynomials to get the remainder;
[tex]A.\ 4x^3 + 2x^2 + 5[/tex]
[tex]4(2)^3 + 2(2)^2 + 5[/tex]
Open Brackets
[tex]4 * 8 + 2 * 4 + 5[/tex]
[tex]32 + 8 + 5[/tex]
[tex]Remainder = 45[/tex]
[tex]B.\ x^3 - 2x^2 - 4x + 1[/tex]
[tex](2)^3 - 2(2)^2 - 4(2) + 1[/tex]
Open Brackets
[tex]8 - 2 * 4 - 4 * 2 + 1[/tex]
[tex]8 - 8 - 8 + 1[/tex]
[tex]Remainder = -7[/tex]
[tex]C.\ 3x^2 + 6x - 2[/tex]
[tex]3(2)^2 + 6(2) - 2[/tex]
Open Brackets
[tex]3 * 4 + 6 * 2 - 2[/tex]
[tex]12 + 12 - 2[/tex]
[tex]Remainder = -2[/tex]
[tex]D.\ -2x^3 + 4x^2 + 3x - 2[/tex]
[tex]-2(2)^3 + 4(2)^2 + 3(2) - 2[/tex]
Open Brackets
[tex]-2 * 8 + 4 * 4 + 3 * 2 - 2[/tex]
[tex]-16 + 16 + 6 - 2[/tex]
[tex]Remainder = 4[/tex]
From the calculations above, the polynomial with a remainder of -7 when divided by [tex]x - 2[/tex] is [tex]B.\ x^3 - 2x^2 - 4x + 1[/tex]
The value of the polynomial [tex]x^3-2x^2-4x+1[/tex] is -7 at x = 2. So, option B is correct.
Important information:
- Remainder is -7.
- Divisor is [tex]x-2[/tex].
Remainder Theorem:
According to the Remainder Theorem, if a polynomial is p(x) is divided by (x-c), then the remainder is p(c).
If polynomials have a remainder of -7 when divided by x – 2. So, the value of the polynomial must be -7 at x = 2.
Substitute x = 2 in the first polynomial.
[tex]4(2)^3+2(2)^2+5=45\neq -7[/tex]
Substitute x = 2 in the second polynomial.
[tex](2)^3-2(2)^2-4(2)+1=-7[/tex]
Substitute x = 2 in the third polynomial.
[tex]3(2)^2+6(2)-2=22\neq -7[/tex]
Substitute x = 2 in the fourth polynomial.
[tex]-2(2)^3+4(2)^2+3(2)-2=4\neq -7[/tex]
Only the value of the second polynomial is -7 at x = 2. Therefore, the correct option is B.
Find out more about 'Remainder Theorem' here:
https://brainly.com/question/4515216