Respuesta :

Answer:

           A = 27(2√3-π) cm² ≈ 8.71 cm²

Step-by-step explanation:

Area of shaded region it is area of hexagon minus area of circle.

A regular hexagon is comprised of six equilateral triangles (of the same sides).

So its area:  [tex]A_1=6\cdot\dfrac{S^2\sqrt3}{4}=\dfrac{3S^2\sqrt3}2[/tex]     {S = side of the triangle}

Height (H) of such a triangle is equal to radius (R) of a circle inscribed in the hexagon:

[tex]R = H = \dfrac{S\sqrt3}{2}[/tex]

Area of shaded region:

[tex]A=A_1-A_\circ=\dfrac{3S^2\sqrt3}2-\pi R^2=\dfrac{6S^2\sqrt3}4-\pi\left(\dfrac{S\sqrt3}2\right)^2=\dfrac{S^2(6\sqrt3-3\pi)}4[/tex]

S = 6 cm

so:

[tex]A=\dfrac{6^2(6\sqrt3-3\pi)}4=\dfrac{36(6\sqrt3-3\pi)}4=9(6\sqrt3-3\pi)=27(2\sqrt3-\pi)\ cm^2\\\\A=27(2\sqrt3-\pi)\ cm^2\approx8.71\ cm^2[/tex]

Ver imagen unicorn3125