I suppose the curve is [tex]r(\theta)=e^\theta[/tex].
Tangent lines to the curve have slope [tex]\frac{dy}{dx}[/tex]; use the chain rule to get this in polar coordinates.
[tex]\dfrac{dy}{dx}=\dfrac{dy}{d\theta}\dfrac{d\theta}{dx}=\dfrac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}[/tex]
We have
[tex]y(\theta)=r(\theta)\sin\theta\implies\dfrac{dy}{d\theta}=\dfrac{dr}{d\theta}\sin\theta+r(\theta)\cos\theta[/tex]
[tex]x(\theta)=r(\theta)\cos\theta\implies\dfrac{dx}{d\theta}=\dfrac{dr}{d\theta}\cos\theta-r(\theta)\sin\theta[/tex]
[tex]r(\theta)=e^\theta\implies\dfrac{dr}{d\theta}=e^\theta[/tex]
[tex]\implies\dfrac{dy}{dx}=\dfrac{e^\theta\sin\theta+e^\theta\cos\theta}{e^\theta\cos\theta-e^\theta\sin\theta}=\dfrac{\sin\theta+\cos\theta}{\cos\theta-\sin\theta}[/tex]
The tangent line is horizontal when the slope is 0, which happens wherever the numerator vanishes:
[tex]\sin\theta+\cos\theta=0\implies\sin\theta=-\cos\theta\implies\tan\theta=-1[/tex]
[tex]\implies\theta=\boxed{-\dfrac\pi4+n\pi}[/tex]
(where [tex]n[/tex] is any integer)
The tangent line is vertical when the slope is infinite or undefined, which happens when the denominator is 0:
[tex]\cos\theta-\sin\theta=0\implies\sin\theta=\cos\theta\implies\tan\theta=1[/tex]
[tex]\implies\theta=\boxed{\dfrac\pi4+n\pi}[/tex]