Respuesta :
Answer:
a) true.
b) True
c) False. In the equation above the mass does not appear
d) True
e) False. Mass does not appear in the equation
f) False. The load even when distributed in the space can be considered concentrated in the center
Explanation:
1. The electric force is given by the relation
F = k Q e / r2
where k is the Coulomb constant, Q the charge used, e the charge of the electron and r the distance between the two.
The strength depends on:
a) true.
b) True
c) False. In the equation above the mass does not appear
d) True
e) False. Mass does not appear in the equation
f) False. The load even when distributed in the space can be considered concentrated in the center
two.
a) True
b) Treu
c) Fail
f) false
For a single electron located at a distance from a positive charge, we have:
1. The force on the electron depends on the distance between it and the positive charge (option a) and the charge of both particles (option b and d).
2. The electric field at the electron's position depends on the distance between the positive charge and it (option a) and the charge of the positive particle (option d).
Part 1
The force on a single electron at a distance from the point charge is given by Coulomb's law:
[tex] F = \frac{Kq_{1}q_{2}}{r^{2}} [/tex] (1)
Where:
- K: is the Coulomb's constant
- q₁: is the charge of the positive charge
- q₂: is the charge of the electron
- d: is the distance between the positive charge and the electron
As we can see in equation (1), the force on the electron by the positive charge depends on both charges q₁ and q₂, and the distance, so the correct options are:
a. The distance between the positive charge and the electron
b. The charge on the electron
d. The charge of the positive charge
The other options (c, e, f, and g) are incorrect because the electric force does not depend on the particles' masses or their radii.
Part 2
The electric field (E) at a distance "r" from a point charge is given by:
[tex] E = \frac{Kq_{1}}{r^{2}} [/tex] (2)
From equation (2), we can see that the electric field is directly proportional to the charge and inversely proportional to the distance of interest (r).
The electric field at the electron's position is given by the one produced by the positive charge, so the correct options are:
a. The distance between the positive charge and the electron
d. The charge of the positive charge
The other options (b, c, e, f, and g) are incorrect because the electric field is independent of the mass of the charges involved and their radii.
Therefore, the correct options for part 1 are a, b, and d and for part 2 are a and d.
Learn more about the electric field here:
brainly.com/question/13308086
I hope it helps you!