Respuesta :

Answer:

Invariant points = 0

Step-by-step explanation:

When a point (h, k) is translated by a vector [tex]\binom{x}{y}[/tex], rule to be followed,

(h, k) → [(x + h), (y + k)]

Following this rule translated vertices of the rectangle OABC by a vector [tex]\binom{1}{3}[/tex] will be,

O(0,0) → O'(1, 3)

A(3, 0) → A'[(3 + 1), (0 + 3)]

           → A'(4, 3)

B(3, 3) → B'[(3 + 1), (3 + 3)]

           → B'(4, 6)

C(3, 0) → C'[(3 + 1), (0 + 3)]

           → C'(4, 3)

Therefore, every point on the perimeter of the square will get changed.

Number of invariant points = 0