Respuesta :

Answer:

Length of transverse axis  = 2 b  = 10

Length of conjugate axis   = 2 a  = 4      

Step-by-step explanation:

Explanation:-

Given Hyperbola

                       [tex]\frac{(y+2)^{2} }{25} -\frac{(x-3)^{2} }{4} =1[/tex]

  Standard form of Hyperbola    

                  [tex]\frac{(y-(K))^{2} }{b^{2} } -\frac{(x-h)^{2} }{a^{2} } =1[/tex]

   Center (h , k ) = (3 , -2 )  , a = 2 and b = 5

Length of transverse axis  = 2 b = 2(5) = 10

Length of conjugate axis   = 2 a = 2 (2) = 4