Answer:
Length of transverse axis = 2 b = 10
Length of conjugate axis = 2 a = 4
Step-by-step explanation:
Explanation:-
Given Hyperbola
[tex]\frac{(y+2)^{2} }{25} -\frac{(x-3)^{2} }{4} =1[/tex]
Standard form of Hyperbola
[tex]\frac{(y-(K))^{2} }{b^{2} } -\frac{(x-h)^{2} }{a^{2} } =1[/tex]
Center (h , k ) = (3 , -2 ) , a = 2 and b = 5
Length of transverse axis = 2 b = 2(5) = 10
Length of conjugate axis = 2 a = 2 (2) = 4