Respuesta :

Answer:

The position of the particle is described by [tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]

Step-by-step explanation:

The position function is obtained after integrating twice on acceleration function, which is:

[tex]a(t) = 2\cdot t + 5[/tex], [tex]\forall t \geq 0[/tex]

Velocity

[tex]v(t) = \int\limits^{t}_{0} {a(t)} \, dt[/tex]

[tex]v(t) = \int\limits^{t}_{0} {(2\cdot t + 5)} \, dt[/tex]

[tex]v(t) = 2\int\limits^{t}_{0} {t} \, dt + 5\int\limits^{t}_{0}\, dt[/tex]

[tex]v(t) = t^{2}+5\cdot t + v(0)[/tex]

Where [tex]v(0)[/tex] is the initial velocity.

If [tex]v(0) = -5[/tex], the particular solution of the velocity function is:

[tex]v(t) = t^{2} + 5\cdot t -5, \forall t \geq 0[/tex]

Position

[tex]s(t) = \int\limits^{t}_{0} {v(t)} \, dt[/tex]

[tex]s(t) = \int\limits^{t}_{0} {(t^{2}+5\cdot t -5)} \, dt[/tex]

[tex]s(t) = \int\limits^{t}_0 {t^{2}} \, dt + 5\int\limits^{t}_0 {t} \, dt - 5\int\limits^{t}_0\, dt[/tex]

[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + s(0)[/tex]

Where [tex]s(0)[/tex] is the initial position.

If [tex]s(0) = 6[/tex], the particular solution of the position function is:

[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]

Answer:

Position of the particle is :

[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex]

Step-by-step explanation:

Given information:

The particle is moving with an acceleration that is function of:

[tex]a(t)=2t+5[/tex]

To find the expression for the position of the particle first integrate for the velocity expression:

AS:

[tex]V(t)=\int\limits^0_t {a(t)} \, dt\\v(t)= \int\limits^0_t {(2.t+5)} \, dt\\\\v(t)=t^2+5.t+v(0)\\[/tex]

Where, [tex]v(0)[/tex] is the initial velocity.

Noe, if we tale the [tex]v(0) =-5[/tex] ,

So, the velocity equation can be written as:

[tex]v(t)=t^2+5.t-5[/tex]

Now , For the position of the particle we need to integrate the velocity equation :

As,

Position:

[tex]S(t)=\int\limits^0_t {v(t)} \, dt \\S(t)=\int\limits^0_t {(t^2+5.t-5)} \, dt\\S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+s(0)[/tex]

Where, [tex]S(0)[/tex] is the initial position of the particle.

So, we put the value [tex]s(0)=6[/tex] and get the position of the particle.

Hence, Position of the particle is :

[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex].

For more information visit:

https://brainly.com/question/22008756?referrer=searchResults