A random sample of 64 students at a university showed an average age of 20 years and a sample standard deviation of 4 years. The 90% confidence interval for the true average age of all students in the university is

Respuesta :

Answer:

The 90%  confidence level is  [tex]19.15< L < 20.85[/tex]

Step-by-step explanation:

From the question we are told that

     The sample size is  [tex]n = 64[/tex]

     The mean age is  [tex]\= x = 20 \ years[/tex]

      The standard deviation  is   [tex]\sigma = 4 \ years[/tex]

 

Generally  the degree of freedom for this data set is mathematically represented as

        [tex]df = n - 1[/tex]

substituting values

        [tex]df = 64 - 1[/tex]

        [tex]df = 63[/tex]

Given that the level of confidence is  90%  the significance level is mathematically evaluated as

          [tex]\alpha = 100 - 90[/tex]

         [tex]\alpha =[/tex]10 %  

         [tex]\alpha = 0.10[/tex]

Now   [tex]\frac{\alpha }{2} = \frac{0.10}{2} = 0.05[/tex]

Since we are considering a on tail experiment

The  critical value for half of  this significance level at the calculated  degree of freedom is obtained from the critical value table as

           [tex]t_{df, \frac{ \alpha}{2} } = t_{63, 0.05 } = 1.669[/tex]

   The margin for error is mathematically represented as

          [tex]MOE = t_{df , \frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]

substituting values  

          [tex]MOE = 1.699 * \frac{4 }{\sqrt{64} }[/tex]

         [tex]MOE = 0.85[/tex]

he 90% confidence interval for the true average age of all students in the university is evaluated as follows

           [tex]\= x - MOE < L < \= x + E[/tex]

substituting values  

         [tex]20 - 0. 85 < L < 20 + 0.85[/tex]

         [tex]19.15< L < 20.85[/tex]