Respuesta :

Answer:

y = -[tex]\frac{4}{5}[/tex]  x  + [tex]\frac{27}{5}[/tex]      or

5y = -4x + 27

Step-by-step explanation:

To find the equation of a line with points (3,3) and is perpendicular to   5x+5-4y=0

we will follow the steps below:

First find write the equation:  5x+5-4y=0  in standard form  y= mx + c and find the slope

5x+5-4y=0

4y = 5x + 5

divide through by 4

4y /4= 5x/4 + 5/4

y = [tex]\frac{5}{4}[/tex] x +  [tex]\frac{5}{4}[/tex]

comparing the above with y = mx + c

m=  [tex]\frac{5}{4}[/tex]

since the equations are perpendicular.

To find the new slope

[tex]m_{1}[/tex][tex]m_{2}[/tex]  = -1

[tex]\frac{5}{4}[/tex] [tex]m_{2}[/tex]   = -1

multiply both-side of the equation by [tex]\frac{4}{5}[/tex]

[tex]\frac{4}{5}[/tex]× [tex]\frac{5}{4}[/tex] [tex]m_{2}[/tex]   = -1 × [tex]\frac{4}{5}[/tex]

[tex]m_{2}[/tex]   =  -[tex]\frac{4}{5}[/tex]

The slope of our new  equation is  -[tex]\frac{4}{5}[/tex]

The points are (3,3)

We can now go ahead and form our new equation

y - [tex]y_{1}[/tex]  =  m ( x - [tex]x_{1}[/tex])

y - 3 =  -[tex]\frac{4}{5}[/tex] ( x - 3)

y - 3 =  -[tex]\frac{4}{5}[/tex]  x  +  [tex]\frac{12}{5}[/tex]

y = -[tex]\frac{4}{5}[/tex]  x  + 3 +   [tex]\frac{12}{5}[/tex]

y = -[tex]\frac{4}{5}[/tex]  x  + [tex]\frac{27}{5}[/tex]

5y = -4x + 27