Respuesta :
Answer: a) 0.8708, b) 5714, c) 0.000, d) 0.3830
Step-by-step explanation:
(a)
To find P(Z>-1.13):
Since Z is negative, it lies on left hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.3708
So,
P(Z>-1.13) = 0.5 + 0.3708 = 0.8708
(b)
To find P(Z<0.18):
Since Z is positive, it lies on right hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.0714
So,
P(Z<0.18) = 0.5 + 0.0714 = 0.5714
(c)
To find P(Z>8):
Since Z is positive, it lies on right hand side of mid value.
Table of Area Under the Standard Normal Curve gives area = 0.5 nearly
So,
P(Z>8) = 0.5 - 0.5 nearly = 0.0000
(d)
To find P(| Z | < 0.5)
that is
To find P(-0.5 < Z < 0.5):
Case 1: For Z from - 0.5 to mid value:
Table of Area Under the Standard Normal Curve gives area = 0.1915
Case 2: For Z from mid value to 0.5:
Table of Area Under the Standard Normal Curve gives area = 0.1915
So,
P(| Z | < 0.5) = 2 * 0.1915 = 0.3830
The Probability can be determine using z-Table. The z- table use to determine the area under the standard normal curve for any value between the mean (zero) and any z-score.
(a) The value of [tex]P(z>-1.13)=0.8708[/tex].
(b) The value of [tex]P(Z < 0.18) = 0.5714[/tex].
(c) The value of [tex]P(Z > 8) = 0.0000[/tex].
(d) The value of [tex]P(| Z | < 0.5) =0.3830[/tex].
Given:
The given condition is [tex]Z\sim N(\mu= 0,\sigma = 1).[/tex]
(a)
Find the value for [tex]P(Z > -1.13)[/tex].
Here Z is less than 1 that means Z is negative. So it will lies it lies on left hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area = 0.3708[/tex].
Now,
[tex]P(Z > -1.13)=0.5 + 0.3708 = 0.8708[/tex]
Thus, the value of [tex]P(z>-1.13)=0.8708[/tex].
(b)
Find the value for [tex]P(Z < 0.18)[/tex].
Here Z is positive. So it will lies it lies on right hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area = 0.0714[/tex].
Now,
[tex]P(Z <0.18)=0.5 + 0.0714 = 0.5714[/tex]
Thus, the value of [tex]P(Z < 0.18) = 0.5714[/tex].
(c)
Find the value for [tex]P(Z >8)[/tex].
Here Z is positive. So it will lies it lies on right hand side of mid value.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area \approx 0.5[/tex].
Now,
[tex]P(Z >8)\approx0.5 - 0.5 = 0.0000[/tex]
Thus, the value of [tex]P(Z > 8) = 0.0000[/tex].
(d)
Find the value for [tex]P(|Z| <0.05)[/tex].
Here Z is mod of Z, it may be positive or negative. Consider the negative value of Z.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area =0.1915[/tex].
Consider the positive value of Z.
Refer the table of Area Under the Standard Normal Curve.
[tex]\rm Area =0.1915[/tex].
Now,
[tex]P(|Z| <0.5)=2\times 0.1915 = 0.3830[/tex]
Thus, the value of [tex]P(| Z | < 0.5) =0.3830[/tex].
Learn more about z-table here:
https://brainly.com/question/16051105