contestada

Find the probability of each of the following, if Z~N(μ = 0,σ = 1).
(please round any numerical answers to 4 decimal places)
a) P(Z > -1.13) =
b) P(Z < 0.18) =
c) P(Z > 8) =
d) P(| Z | < 0.5) =

Respuesta :

Answer: a) 0.8708, b) 5714, c) 0.000, d) 0.3830

Step-by-step explanation:

(a)

To find P(Z>-1.13):

Since Z is negative, it lies on left hand side of mid value.

Table of Area Under the Standard Normal Curve gives area = 0.3708

So,

P(Z>-1.13) = 0.5 + 0.3708 = 0.8708

(b)

To find P(Z<0.18):

Since Z is positive, it lies on right hand side of mid value.

Table of Area Under the Standard Normal Curve gives area = 0.0714

So,

P(Z<0.18) = 0.5 + 0.0714 = 0.5714

(c)

To find P(Z>8):

Since Z is positive, it lies on right hand side of mid value.

Table of Area Under the Standard Normal Curve gives area = 0.5 nearly

So,

P(Z>8) = 0.5 - 0.5 nearly = 0.0000  

(d)

To find P(| Z | < 0.5)

that is

To find P(-0.5 < Z < 0.5):

Case 1: For Z from - 0.5 to mid value:

Table of Area Under the Standard Normal Curve gives area = 0.1915

Case 2: For Z from mid value to 0.5:

Table of Area Under the Standard Normal Curve gives area = 0.1915

So,

P(| Z | < 0.5) = 2 * 0.1915 = 0.3830

The Probability can be determine using z-Table. The z- table use to determine the area under the standard normal curve for any value between the mean (zero) and any z-score.

(a) The value of [tex]P(z>-1.13)=0.8708[/tex].

(b) The value of  [tex]P(Z < 0.18) = 0.5714[/tex].

(c) The value of [tex]P(Z > 8) = 0.0000[/tex].

(d) The value of [tex]P(| Z | < 0.5) =0.3830[/tex].

Given:

The given condition is [tex]Z\sim N(\mu= 0,\sigma = 1).[/tex]

(a)

Find the value for [tex]P(Z > -1.13)[/tex].

Here Z is less than 1 that means Z is negative. So it will lies it lies on left hand side of mid value.

Refer the table of Area Under the Standard Normal Curve.

[tex]\rm Area = 0.3708[/tex].

Now,

[tex]P(Z > -1.13)=0.5 + 0.3708 = 0.8708[/tex]

Thus, the value of [tex]P(z>-1.13)=0.8708[/tex].

(b)

Find the value for [tex]P(Z < 0.18)[/tex].

Here Z is positive. So it will lies it lies on right hand side of mid value.

Refer the table of Area Under the Standard Normal Curve.

[tex]\rm Area = 0.0714[/tex].

Now,

[tex]P(Z <0.18)=0.5 + 0.0714 = 0.5714[/tex]

Thus, the value of  [tex]P(Z < 0.18) = 0.5714[/tex].

(c)

Find the value for [tex]P(Z >8)[/tex].

Here Z is positive. So it will lies it lies on right hand side of mid value.

Refer the table of Area Under the Standard Normal Curve.

[tex]\rm Area \approx 0.5[/tex].

Now,

[tex]P(Z >8)\approx0.5 - 0.5 = 0.0000[/tex]

Thus, the value of [tex]P(Z > 8) = 0.0000[/tex].

(d)

Find the value for [tex]P(|Z| <0.05)[/tex].

Here Z is mod of Z, it may be positive or negative. Consider the negative value of Z.

Refer the table of Area Under the Standard Normal Curve.

[tex]\rm Area =0.1915[/tex].

Consider the positive  value of Z.

Refer the table of Area Under the Standard Normal Curve.

[tex]\rm Area =0.1915[/tex].

Now,

[tex]P(|Z| <0.5)=2\times 0.1915 = 0.3830[/tex]

Thus, the value of [tex]P(| Z | < 0.5) =0.3830[/tex].

Learn more about z-table here:

https://brainly.com/question/16051105