Respuesta :

Step-by-step explanation:

Let the other endpoint be (x,y)

Since, (1,6) is the midpoint between (9,1) and (x,y)

Therefore,

1=(9+x)/2

=> 2=9+x

=> x= -7

and,

6=(1+y)/2

=>12= 1+y

=> y=11

So, the other endpoint is ( -7, 11)

Answer:

( - 7 , 11)

Step-by-step explanation:

Let the coordinates of Endpoint 2 be

(x ,y)

The midpoint of the endpoints is given by

[tex](1,6) = ( \frac{9 + x}{2} , \frac{1 + y}{2} )[/tex]

Where x and y are coordinates of Endpoint 2

Comparing with the midpoint we have

[tex]1 = \frac{9 + x}{2} \\ 2 = 9 + x \\ \\ x = 2 - 9 \\ \\ x = - 7[/tex]

[tex]6 = \frac{1 + y}{2} \\ 12 = 1 + y \\ \\ y = 12 - 1 \\ \\ y = 11[/tex]

Therefore x = - 7 and y = 11

The coordinates of Endpoint 2 are

( - 7 , 11)

Hope this helps you