Respuesta :

Answer:

tan =-1

Step-by-step explanation:

tan(θ)=sen(θ)/cos(θ)

so

[tex]tan(angle)=\frac{\frac{-\sqrt{2} }{2} }{\frac{\sqrt{2} }{2} } }\\\\tan(angle)=-1[/tex]

Answer:

Sin (theta)=[tex] - \frac{ \sqrt{2} }{2} [/tex]

Tan ( theta)= [tex] - 1[/tex]

Step-by-step explanation:

[tex]cos \: \: theta \: = \frac{ \sqrt{2} }{2} = \frac{1}{ \sqrt{2} } = cos \: \frac{\pi}{4 } [/tex]

[tex]cos \: (2\pi \: - \frac{\pi}{4} ) \: \: ( \frac{3\pi}{2} < theta < 2\pi)[/tex]

[tex] = cos \: \frac{7\pi}{4} [/tex]

Theta = 7π / 4

[tex]sin \: theta = sin \: \frac{7\pi}{4} [/tex]

[tex] = sin \: (2\pi \: - \frac{\pi}{4} )[/tex]

[tex] - sin \: \frac{\pi}{4} [/tex]

[tex] = \frac{ - 1}{ \sqrt{2} } [/tex]

[tex] = - \frac{ \sqrt{2} }{2} [/tex]

Finding tan theta:

[tex]tan \: theta = tan \: \frac{7\pi}{4} [/tex]

[tex] =tan \: (2\pi - \frac{\pi}{4} )[/tex]

[tex] = - tan \: \frac{\pi}{4} [/tex]

[tex] = - 1[/tex]

Hope this helps...

Good luck on your assignment...