Respuesta :

Answer:

[tex]sinx=-\dfrac{12}{13}[/tex]

[tex]cosx=-\dfrac{5}{13}[/tex]

[tex]cotx=\dfrac{5}{12}[/tex]

Step-by-step explanation:

Given that:

[tex]\dfrac{12}{5} = tan(x)[/tex]

[tex]\pi <x < 3\pi/2[/tex]

i.e. x is in 3rd quadrant. So tan is positive.

To find:

sin(x), cos(x), and cot(x).

Solution:

Given that:

[tex]\dfrac{12}{5} = tan(x)[/tex]

We know by trigonometric identities that:

[tex]tan\theta =\dfrac{Perpendicular}{Base}[/tex]

Comparing with the given values:

[tex]\theta=x[/tex]

Perpendicular = 12 units

Base = 5 units

Using pythagorean theorem, we can find out hypotenuse:

According to pythagorean theorem:

[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}[/tex]

[tex]\Rightarrow Hypotenuse=\sqrt{12^2+5^2}\\\Rightarrow Hypotenuse=\sqrt{169} = 13 units[/tex]

We can easily find out the values of:

[tex]sinx, cos x\ and\ cot x[/tex]

[tex]sin\theta =\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]sinx =\dfrac{12}{13}[/tex]

Given that x is in 3rd quadrant, sinx will be negative.

[tex]\therefore sinx =-\dfrac{12}{13}[/tex]

[tex]sin\theta =\dfrac{Base}{Hypotenuse}[/tex]

[tex]cosx =\dfrac{5}{13}[/tex]

Given that x is in 3rd quadrant, cosx will be negative.

[tex]\therefore cosx =-\dfrac{5}{13}[/tex]

[tex]cot\theta = \dfrac{1}{tan\theta}[/tex]

Given that x is in 3rd quadrant, cotx will be positive.

[tex]cotx = \dfrac{1}{\dfrac{12}{5}} = \dfrac{5}{12}[/tex]