the diagram above shows a rectangle inscribed in a circle AB=10 and AC =12 caculate the total surface area of the shaded part

Answer:
[tex]71.63 \: \: \mathrm{cm^2 }[/tex]
Step-by-step explanation:
Once we know the diameter of the circle, we can figure out the problem.
The diameter of the circle = The diagonal of the rectangle inscribed in the circle
To find the diagonal of the rectangle, we can use a formula.
[tex]d=\sqrt{w^2 + l^2}[/tex]
The width is 10 cm and the length is 12 cm.
[tex]d=\sqrt{10^2 + 12^2}[/tex]
[tex]d \approx 15.62[/tex]
The diagonal of the rectangle inscribed in the circle is 15.62 cm.
The diameter of the circle is 15.62 cm.
Find the area of the whole circle.
[tex]A=\pi r^2[/tex]
The [tex]r[/tex] is the radius of the circle, to find radius from diameter we can divide the value by 2.
[tex]r = \frac{d}{2}[/tex]
[tex]r=\frac{15.62}{2}[/tex]
[tex]r=7.81[/tex]
Let’s find the area now.
[tex]A=\pi (7.81)^2[/tex]
[tex]A \approx 191.625[/tex]
Find the area of rectangle.
[tex]A=lw[/tex]
Length × Width.
[tex]A = 12 \times 10[/tex]
[tex]A=120[/tex]
Subtract the area of the whole circle with the area of rectangle to find area of shaded part.
[tex]191.625-120[/tex]
[tex]71.625 \approx 71.63[/tex]