Respuesta :

Answer:

[tex]71.63 \: \: \mathrm{cm^2 }[/tex]

Step-by-step explanation:

Once we know the diameter of the circle, we can figure out the problem.

The diameter of the circle = The diagonal of the rectangle inscribed in the circle

To find the diagonal of the rectangle, we can use a formula.

[tex]d=\sqrt{w^2 + l^2}[/tex]

The width is 10 cm and the length is 12 cm.

[tex]d=\sqrt{10^2 + 12^2}[/tex]

[tex]d \approx 15.62[/tex]

The diagonal of the rectangle inscribed in the circle is 15.62 cm.

The diameter of the circle is 15.62 cm.

Find the area of the whole circle.

[tex]A=\pi r^2[/tex]

The [tex]r[/tex] is the radius of the circle, to find radius from diameter we can divide the value by 2.

[tex]r = \frac{d}{2}[/tex]

[tex]r=\frac{15.62}{2}[/tex]

[tex]r=7.81[/tex]

Let’s find the area now.

[tex]A=\pi (7.81)^2[/tex]

[tex]A \approx 191.625[/tex]

Find the area of rectangle.

[tex]A=lw[/tex]

Length × Width.

[tex]A = 12 \times 10[/tex]

[tex]A=120[/tex]

Subtract the area of the whole circle with the area of rectangle to find area of shaded part.

[tex]191.625-120[/tex]

[tex]71.625 \approx 71.63[/tex]