Suppose the current is changing with time according to I = a + bt, where a and b are constants. Determine the magnitude of the emf (in V) that is induced in the loop if b = 14.0 A/s, h = 1.00 cm, w = 15.0 cm, and L = 1.05 m.

Respuesta :

Answer:

[tex]emf=81.51\times 10^{-7} Volt[/tex]

Explanation:

Given that

I = a + b t

b = 14 A/s , h= 1 cm , w= 15 cm , L= 1.05 m

The magnitude of induced emf is given as follows

[tex]emf=\dfrac{d\phi}{dt}[/tex]

[tex]emf=\dfrac{\mu_o\times L}{2\times \pi}\times ln\dfrac{h+w}{h}\times \dfrac{dI}{dt}[/tex]

I = a + b t

[tex]\dfrac{dI}{dt}= b[/tex]

Now by putting the values in the above equation we get

[tex]emf=\dfrac{4\times \pi \times 10^{-7}\times 1.05}{2\times \pi}\times ln\dfrac{1+15}{1}\times 14[/tex]

[tex]emf=81.51\times 10^{-7} Volt[/tex]

Thus the induce emf will be

[tex]emf=81.51\times 10^{-7} Volt[/tex]