Answer:
[tex]emf=81.51\times 10^{-7} Volt[/tex]
Explanation:
Given that
I = a + b t
b = 14 A/s , h= 1 cm , w= 15 cm , L= 1.05 m
The magnitude of induced emf is given as follows
[tex]emf=\dfrac{d\phi}{dt}[/tex]
[tex]emf=\dfrac{\mu_o\times L}{2\times \pi}\times ln\dfrac{h+w}{h}\times \dfrac{dI}{dt}[/tex]
I = a + b t
[tex]\dfrac{dI}{dt}= b[/tex]
Now by putting the values in the above equation we get
[tex]emf=\dfrac{4\times \pi \times 10^{-7}\times 1.05}{2\times \pi}\times ln\dfrac{1+15}{1}\times 14[/tex]
[tex]emf=81.51\times 10^{-7} Volt[/tex]
Thus the induce emf will be
[tex]emf=81.51\times 10^{-7} Volt[/tex]