What is the equation for the plane illustrated below?

Answer:
Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].
Step-by-step explanation:
The general equation in rectangular form for a 3-dimension plane is represented by:
[tex]a\cdot x + b\cdot y + c\cdot z = d[/tex]
Where:
[tex]x[/tex], [tex]y[/tex], [tex]z[/tex] - Orthogonal inputs.
[tex]a[/tex], [tex]b[/tex], [tex]c[/tex], [tex]d[/tex] - Plane constants.
The plane presented in the figure contains the following three points: (2, 0, 0), (0, 2, 0), (0, 0, 3)
For the determination of the resultant equation, three equations of line in three distinct planes orthogonal to each other. That is, expressions for the xy, yz and xz-planes with the resource of the general equation of the line:
xy-plane (2, 0, 0) and (0, 2, 0)
[tex]y = m\cdot x + b[/tex]
[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - x-Intercept, dimensionless.
If [tex]x_{1} = 2[/tex], [tex]y_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]y_{2} = 2[/tex], then:
Slope
[tex]m = \frac{2-0}{0-2}[/tex]
[tex]m = -1[/tex]
x-Intercept
[tex]b = y_{1} - m\cdot x_{1}[/tex]
[tex]b = 0 -(-1)\cdot (2)[/tex]
[tex]b = 2[/tex]
The equation of the line in the xy-plane is [tex]y = -x+2[/tex] or [tex]x + y = 2[/tex], which is equivalent to [tex]3\cdot x + 3\cdot y = 6[/tex].
yz-plane (0, 2, 0) and (0, 0, 3)
[tex]z = m\cdot y + b[/tex]
[tex]m = \frac{z_{2}-z_{1}}{y_{2}-y_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - y-Intercept, dimensionless.
If [tex]y_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]y_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:
Slope
[tex]m = \frac{3-0}{0-2}[/tex]
[tex]m = -\frac{3}{2}[/tex]
y-Intercept
[tex]b = z_{1} - m\cdot y_{1}[/tex]
[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]
[tex]b = 3[/tex]
The equation of the line in the yz-plane is [tex]z = -\frac{3}{2}\cdot y+3[/tex] or [tex]3\cdot y + 2\cdot z = 6[/tex].
xz-plane (2, 0, 0) and (0, 0, 3)
[tex]z = m\cdot x + b[/tex]
[tex]m = \frac{z_{2}-z_{1}}{x_{2}-x_{1}}[/tex]
Where:
[tex]m[/tex] - Slope, dimensionless.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.
[tex]b[/tex] - z-Intercept, dimensionless.
If [tex]x_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:
Slope
[tex]m = \frac{3-0}{0-2}[/tex]
[tex]m = -\frac{3}{2}[/tex]
x-Intercept
[tex]b = z_{1} - m\cdot x_{1}[/tex]
[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]
[tex]b = 3[/tex]
The equation of the line in the xz-plane is [tex]z = -\frac{3}{2}\cdot x+3[/tex] or [tex]3\cdot x + 2\cdot z = 6[/tex]
After comparing each equation of the line to the definition of the equation of the plane, the following coefficients are obtained:
[tex]a = 3[/tex], [tex]b = 3[/tex], [tex]c = 2[/tex], [tex]d = 6[/tex]
Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].