A platinum resistance thermometer has resistances of 160.0 when placed in a 0°C ice bath and 243.8 when immersed in a crucible containing a melting substance. What is the melting point of this substance? (Hint: First determine the resistance of the platinum resistance thermometer at room temperature, 20°C.)

Respuesta :

Answer:

the melting point T = 125.36°C

Explanation:

Given that:

The resistance of a platinum thermometer at  0°C is  [tex]R_o[/tex] = 160.0 ohms

The resistance of a platinum thermometer when immersed in a crucible containing a melting substance [tex]R_t[/tex] = 243.8 ohms

The temperature coefficient at room temperature  20°C = ∝ = 0.00392

The objective is to determine the melting point of this substance

To do that ; at 20°C, the resistance of the platinum thermometer can be calculated as follows:

[tex]R_{20} = R_o(1 + \alpha \Delta T)[/tex]

[tex]R_{20} = 160(1 + (0.00392 \times (20-0)^0C))[/tex]

[tex]R_{20} = 160(1 + (0.00392 \times (20))[/tex]

[tex]R_{20} = 160(1 + (0.0784)[/tex]

[tex]R_{20} = 160(1.0784)[/tex]

[tex]R_{20} = 172.544 \ ohms[/tex]

The resistance of the platinum thermometer at t°C , [tex]R_t[/tex] = [tex]R_{20}(1 + \alpha \Delta T)[/tex]

[tex]243.8 = 172.544(1 + 0.00392 \times (T-20)^0C}[/tex]

[tex]\dfrac{243.8}{ 172.544 }= (1 + 0.00392 \times (T-20)^0C}[/tex]

[tex]1.413 = (1 + 0.00392 \times (T-20)^0C}[/tex]

[tex]1.413-1 = 0.00392 \times (T-20)^0C}[/tex]

[tex]0.413 = 0.00392 \times (T-20)^0C}[/tex]

[tex]\dfrac{0.413 }{0.00392} = (T-20)^0C}[/tex]

105.36°C = (T - 20) °C

T = 105.36°C + 20 °C

T = 125.36°C