Respuesta :
Answer:
720 seating arrangments
Step-by-step explanation:
There are eight people but driver is always the same so we only have to deal with combinations of the other 7 seats.
the combination of the five seats has 5! times 2 combinations for each of the 3 passengers willing to ride in the two boat seats thus the total number of different seating arrangements is 5! times 3! or 720
hope this helps :)
Using the Fundamental Counting Theorem, it is found that there are 5760 possible seating arrangements.
What is the Fundamental Counting Theorem?
It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
In this problem:
- For the driver, there are 8 outcomes, hence [tex]n_1 = 8[/tex].
- For the bow seats, there are [tex]n_2 = 3 \times 2 = 6[/tex] outcomes.
- For the other 5 seats, there are [tex]n_3 = 5![/tex] possible outcomes.
Hence:
[tex]N = 8 \times 6 \times 5! = 5760[/tex]
There are 5760 possible seating arrangements.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866