Respuesta :

Answer:

The correct answer will be "56".

Step-by-step explanation:

Use a combination of 8 things taken 3 at a time :

⇒  [tex]8_{C_{3}}[/tex]

⇒  [tex]\frac{8!}{(3!(8 - 3)!)}[/tex]

⇒  [tex]\frac{8!}{(3!5!)}[/tex]

⇒  [tex]\frac{8\times 7\times 6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1}[/tex]

⇒  [tex]8\times 7[/tex]

⇒  [tex]56[/tex]

fichoh

Using the principle of combination, the number of different random samples of size 3 that can be selected is 56.

Using the principle of combination :

  • nCr = [n! ÷ (n-r)! r!]

Hence, we have ;

8C3 = [8! ÷ (8 - 3)! 3!]

8C3 = [8! ÷ 5!3!]

8C3 = (8 × 7 × 6) ÷ (3 × 2 × 1)

8C3 = 8 × 7

8C3 = 56

Hence, there are 56 different possible samples.

Learn more : https://brainly.com/question/25581049