drag the tiles to the correct boxes to complete the pears. Match the values based on parallelogram ABCD, shown in the figure.

length of BC
value of y
m value of x

56–>
4–>
44–>
2–>

drag the tiles to the correct boxes to complete the pears Match the values based on parallelogram ABCD shown in the figure length of BC value of y m value of x class=

Respuesta :

Answer:

[tex]L$ength of \overline{BC} \rightarrow 4$ units\\Value of y\rightarrow44^\circ\\m\angle DAB\rightarrow56^\circ\\$Value of x \rightarrow 2$ units[/tex]

Step-by-step explanation:

In parallelogram ABCD, BC=AD

Given:

BC=(6-x) units

AD =(x+2) units

Therefore:

6-x=x+2

x+x=6-2

2x=4

x=2

BC=(6-x) units

=(6-2) units

BC=4 units

The opposite angles of a parallelogram are equal. Therefore:

[tex]m\angle BCD=m\angle BAD\\12^\circ+y^\circ=100^\circ-y^\circ\\y^\circ+y^\circ=100^\circ-12^\circ\\2y^\circ=88^\circ\\y=44^\circ[/tex]

[tex]m\angle DAB=100^\circ-y^\circ\\=100^\circ-44^\circ\\m\angle DAB=56^\circ[/tex]

Therefore, the match is:

[tex]L$ength of \overline{BC} \rightarrow 4$ units\\Value of y\rightarrow44^\circ\\m\angle DAB\rightarrow56^\circ\\$Value of x \rightarrow 2$ units[/tex]