Respuesta :

Answer:

a. u = 19

b. t = 6

c. a = 2

Step-by-step explanation:

a. Given,

v = 34 , a = 5 , t = 3

[tex]v = u + at[/tex]

plugging the values:

[tex]34 = u + 5 \times 3[/tex]

Calculate the product

[tex]34 = u + 15[/tex]

Move 'u' to L.H.S and change its sign

[tex] - u + 34 = 15[/tex]

Move constant to RHS and change its sign

[tex] - u = 15 - 34[/tex]

Calculate

[tex] - u = - 19[/tex]

The difference sign (-) will be cancelled in both sides:

[tex]u = 19[/tex]

b. Given,

v = 50 , u = 20 , a = 5

[tex]v = u + at[/tex]

plugging the values

[tex]50 = 20 + 5 \times t[/tex]

[tex]50 = 20 + 5t[/tex]

Move 5t to L.H.S and change its sign.

Similarly, Move 50 to R.H.S and change its sign

[tex] - 5t = 20 - 50[/tex]

Calculate

[tex] - 5t = - 30[/tex]

The difference sign (-) will be cancelled in both sides

[tex]5t = 30[/tex]

Divide both sides of the equation by 5

[tex] \frac{5t}{5} = \frac{30}{5} [/tex]

Calculate

[tex]t = 6[/tex]

c. Given,

v = 22 , u = 8 , t = 7

[tex]v = u + at[/tex]

plugging the values

[tex]22 = 8 + a \times 7[/tex]

[tex]22 = 8 + 7a[/tex]

Move 7a to LHS and change its sign

Similarly, Move constant to R.H.S and change its sign

[tex] - 7a = 8 - 22[/tex]

Calculate

[tex] - 7a = - 14[/tex]

The difference sign (-) will be cancelled in both sides

[tex]7a = 14[/tex]

Divide both sides of the equation by 7

[tex] \frac{7a}{7} = \frac{14}{7} [/tex]

Calculate

[tex]a = 2[/tex]

Hope this helps...

Good luck on your assignment..