Respuesta :

Question:

The volume of a right circular cone with both diameter and height equal to h is 250/7 cm³.

What is the value of h?

Answer:

A. 5

Step-by-step explanation:

Given

Solid Shape: Cone

Volume = 250/7

Diameter = Height

Required

Find the height of the cone

Provided that the diameter (D) and the height (h) are equal; This implies that

D = h ------ (1)

Also, Diameter (D) = 2 * Radius (r)

D = 2r

Substitute 2r for D in (1)

2r = h

Multiply both sides by ½

½ * 2r = ½ * h

r = ½h

Volume of a cone is calculated by;

Volume = ⅓πr²h

⅓πr²h = 250/7

Substitute ½h for r

[tex]\frac{1}{3} * \pi * (\frac{1}{2}h)^2 * h = \frac{250}{7}[/tex]

Take π as 22/7, the expression becomes

[tex]\frac{1}{3} * \frac{22}{7} * (\frac{1}{2}h)^2 * h = \frac{250}{7}[/tex]

Open the bracket

[tex]\frac{1}{3} * \frac{22}{7} * \frac{1}{4}h^2 * h = \frac{250}{7}[/tex]

Multiply both sides by 7

[tex]7 * \frac{1}{3} * \frac{22}{7} * \frac{1}{4}h^2 * h = \frac{250}{7} * 7[/tex]

[tex]\frac{1}{3} * 22 * \frac{1}{4}h^2 * h = 250[/tex]

Multiply both sides by 3

[tex]3 * \frac{1}{3} * 22 * \frac{1}{4}h^2 * h = 250 * 3[/tex]

[tex]22 * \frac{1}{4}h^2 * h = 750[/tex]

Multiply both sides by 4

[tex]4 * 22 * \frac{1}{4}h^2 * h = 750 * 4[/tex]

[tex]22 * h^2 * h = 3000[/tex]

[tex]22 * h^3 = 3000[/tex]

Divide both sides by 22

[tex]h^3 = \frac{3000}{22}[/tex]

[tex]h^3 = 136.36[/tex]

Take cube root of both sides

[tex]h = \sqrt[3]{136.36}[/tex]

[tex]h = 5.15[/tex]

[tex]h = 5[/tex] (Approximated)