Identify the distance between points (3,8, 0) and (-2,9,-4), and identify the midpoint of the
segment for which these are the endpoints. Round to the nearest tenth if necessary
A) d-3.5 units; M(-0.5, 8.5.2)
B) d-3.5 units; M(0.5, 8.5.-2)
C) d-6.5 units: M(0.5, 8.5.-2)
D) d-6.5 units: M(-0.5, 8.5.2)

Respuesta :

Answer: C) d-6.5 units: M(0.5, 8.5.-2)

Step-by-step explanation:

Distance between points [tex](x_1,y_1,z_1)[/tex] and [tex](x_2,y_2,z_2)[/tex]  :

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}[/tex]

The midpoint of the line joining [tex](x_1,y_1,z_1)[/tex] and [tex](x_2,y_2,z_2)[/tex] is given by :-

[tex](\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2},\dfrac{z_1+z_2}{2})[/tex]

The given points : (3,8, 0) and (-2,9,-4)

Distance between points (3,8, 0) and (-2,9,-4):

[tex]D=\sqrt{(-2-3)^2+(9-8)^2+(-4-0)^2}\\\\=\sqrt{25+1+16}\\\\=\sqrt{42}=6.48074069841\approx6.5\text{units}[/tex]

The midpoint of the line joining (3,8, 0) and (-2,9,-4) :

[tex](\dfrac{3+(-2)}{2},\dfrac{8+9}{2},\dfrac{0+(-4)}{2})=(\dfrac{1}{2},\dfrac{17}{2},-2)\\\\=(0.5, 8.5.-2)[/tex]

Hence, the correct answer is C) d-6.5 units: M(0.5, 8.5.-2).