Answer:
The merry-go-round's angular velocity 23.84 RPM
Explanation:
Given;
diameter of merry go round, d = 3 m
radius of the merry go round, R = 1.5 m
mass of the merry go round, m = 300 kg
angular velocity = 23 rpm
velocity of John, v = 4.4 m/s
mass of John, m = 30 kg
Apply conservation of angular momentum;
[tex]L_i = L_f[/tex]
[tex]I \omega_i + mvR = (I + mR^2)\omega _f[/tex]
where;
I is moment of inertia of disk
[tex]I = \frac{1}{2} mR^2\\\\I = \frac{1}{2} *300*1.5^2\\\\I = 337.5 \ kg.m^2[/tex]
Substitute in this value in the above equation;
[tex]337.5(2\pi \frac{23}{60} ) + (30*4.4*1.5) = (337.5 + 30*1.5^2) \omega_f\\\\812.9925 \ + \ 198 = 405 \omega _f\\\\1010.9925 = 405 \omega _f\\\\\omega _f = \frac{1010.9925}{405} \\\\\omega _f = 2.496 \ rad/s[/tex]
1 rad/s = 9.5493 rpm
2.496 rad/s = 23.84 RPM
Therefore, the merry-go-round's angular velocity 23.84 RPM