Determine how many litres of water will fit inside the following container. Round answer and all calculations to the nearest whole number.

Determine how many litres of water will fit inside the following container Round answer and all calculations to the nearest whole number class=

Respuesta :

Answer:

[tex]\approx[/tex] 11 litres of water will fit inside the container.

Step-by-step explanation:

As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.

Given:

Height of cylinder, [tex]h_1[/tex] = 15 cm

Diameter of cylinder/ cone, D = 26 cm

Slant height of cone, l = 20 cm

Here, we need to find the volume of container.[tex]\\Volume_{Container} = Volume_{Cylinder}+Volume_{Cone}\\\Rightarrow Volume_{Container} = \pi r_1^2 h_1+\dfrac{1}{3}\pi r_2^2 h_2[/tex]

Here,

[tex]r_1=r_2 = \dfrac{Diameter}{2} = \dfrac{26}{2} =13\ cm[/tex]

To find the Height of Cylinder, we can use the following formula:

[tex]l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm[/tex]

Now, putting the values to find the volume of container:

[tex]Volume_{Container} = \pi \times 13^2 \times 15+\dfrac{1}{3}\pi \times 13^2 \times 15\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 15+\pi \times 13^2 \times 5\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 20\\\Rightarrow Volume_{Container} = 10613.2 \approx 10613\ cm^3[/tex]

Converting [tex]cm^{3 }[/tex] to litres:

[tex]10613 cm^3 = 10.613\ litres \approx 11\ litres[/tex]

[tex]\approx[/tex] 11 litres of water will fit inside the container.