if a student is selected at random find the probability the student is a male given that it's a senior. Round to the nearest whole percent.

Answer: 40%.
Step-by-step explanation:
From the table : Total Seniors = 2+3= 5
Number of male seniors = 2
If a student is selected at random find the probability the student is a male given that it's a senior:
P(Male | senior)[tex]=\dfrac{\text{Number of male seniors}}{\text{Total seniors}}[/tex]
[tex]=\dfrac{2}{5}[/tex]
In percent, [tex]\dfrac{2}{5}\times100=40\%[/tex]
Hence, the probability the student is a male given that it's a senior. =40%.
The probability of the student is a male senior is 7%.
Given, here from the 2- way table the total no. students will be 30.
We have to find out the probability of the student select at random, student is a senior male .
We know that, the probability of an event E, will be
[tex]P(E)=\dfrac{No.\ of \ favaurable\ outcomes}{Total\ outcomes}[/tex]
Now,
[tex]P( Senior\ male)= \dfrac{2}{30} \\\\P( Senior\ male)=0.06\\[/tex]
Representing it in percentage as,
[tex]P( Senior\ male)=0.06666\times100\%\\P( Senior\ male=6.66\%[/tex]
Hence the nearest whole percent will be 7%.
Thus probability of the student is a male senior is 7%.
For more details on probability follow the link:
https://brainly.com/question/795909