Respuesta :

Answer:

61°

Step-by-step explanation:

Given:

∆MNO,

Side MO (n) = 18

MN (o) = 6

m<O = 17°

Required:

m<N

Solution:

Using the sine rule, [tex] \frac{sin N}{n} = \frac{sin O}{o} [/tex] , solve for N.

Plug in the values of M, n, and m

[tex] \frac{sin N}{18} = \frac{sin 17}{6} [/tex]

Cross multiply

[tex] 6*sin(N) = sin(17)*18 [/tex]

[tex] 6*sin(N) = 0.292*18 [/tex]

Divide both sides by 6

[tex] \frac{6*sin N}{6} = \frac{0.292*18}{6} [/tex]

[tex] sin N = \frac{0.292*18}{6} [/tex]

[tex] sin N = \frac{5.256}{6} [/tex]

[tex] sin N = 0.876 [/tex]

[tex] N = sin^-1(0.876) [/tex]

[tex] N = 61.16 [/tex]

m<N ≈ 61°