Respuesta :
Answer:
[tex]x + \frac{b}{2a} = \frac{+/ - \sqrt{b^2-4ac} }{2a}[/tex]
Step-by-step explanation:
Step 1:
[tex]ax^2+bx+c = 0[/tex]
Step 2:
[tex]ax^2+bx = -c[/tex]
Step 3:
[tex]\frac{ax^2+bx}{a} = \frac{-c}{a}[/tex]
Step 4:
Adding [tex]\frac{b^2}{4a^2}[/tex] to both sides to complete the square
[tex]x^2 + \frac{bx}{a} + \frac{b^2}{4a^2} = \frac{-c}{a} + \frac{b^2}{4a^2}[/tex]
Step 5:
[tex]x^2 + \frac{bx}{a} + \frac{b^2}{4a^2} = \frac{-4ac+b^2}{4a^2}[/tex]
Step 6:
Taking square root on both sides
[tex]x + \frac{b}{2a} = \frac{+/ - \sqrt{b^2-4ac} }{2a}[/tex]
Answer:
A. Â Rewrite the perfect square trinomial as a binomial squared on the left side of the equation
Step-by-step explanation: