Respuesta :
Answer:
[tex]f^{-1} = \frac{x-1}{2}[/tex]
Step-by-step explanation:
[tex]f(x) = 2x+1[/tex]
Replace it with y
[tex]y = 2x+1[/tex]
Exchange the values of x and y
[tex]x = 2y+1[/tex]
Solve for y
[tex]x = 2y+1[/tex]
Subtracting 1 from both sides
[tex]2y = x-1[/tex]
Dividing both sides by 2
[tex]y = \frac{x-1}{2}[/tex]
Replace it by [tex]f^{-1}[/tex]
So,
[tex]f^{-1} = \frac{x-1}{2}[/tex]
Answer:
[tex]\displaystyle f^{-1}(x)= \frac{1}{2}x - \frac{1}{2}[/tex]
Step-by-step explanation:
f(x) = 2x + 1
f(x) = y (output)
y = 2x + 1
Solve for x.
y - 1 = 2x
Divide 2 on both sides.
y/2 - 1/2 = x
1/2y - 1/2 = x
Switch variables.
1/2x - 1/2 = y
[tex]f^{-1}(x)= \frac{1}{2}x - \frac{1}{2}[/tex]