In the case of Confidence Intervals and Two-Tailed Hypothesis Tests, the decision rule states that: Reject H0 if the confidence interval ______ contain the value of the hypothesized mean mu0.

Respuesta :

Answer: Reject [tex]H_0[/tex] if the confidence interval does not contain the value of the hypothesized mean [tex]\mu_0[/tex].

Step-by-step explanation:

In the case of Confidence Intervals and Two-Tailed Hypothesis Tests,

Null hypothesis : [tex]H_0:\mu=\mu_0[/tex]  [There is no change in mean.]

Alternative hypothesis: [tex]H_a:\mu\neq\mu_0[/tex]  [There is some difference.]

Since confidence intervals contain the true population parameter ( mean).

So, Decision rule states that

  • Reject [tex]H_0[/tex] if the confidence interval does not contain the value of the hypothesized mean [tex]\mu_0[/tex].
  • We do not reject [tex]H_0[/tex] if the confidence interval contains the value of the hypothesized mean [tex]\mu_0[/tex].