Respuesta :

Answer:

[tex]\frac{3n^2-7n+15}{(n+3)(n-4)}[/tex] will be the answer.

Step-by-step explanation:

The given expression is,

[tex]\frac{3n}{(n+3)}+\frac{5}{(n-4)}[/tex]

By solving this expression,

[tex]\frac{3n}{(n+3)}+\frac{5}{(n-4)}[/tex]

= [tex]\frac{3n(n-4)}{(n+3)(n-4)}+\frac{5(n+3)}{(n+3)(n-4)}[/tex]

= [tex]\frac{3n(n-4)+5(n+3)}{(n+3)(n-4)}[/tex]

= [tex]\frac{3n^2-12n+5n+15}{(n+3)(n-4)}[/tex]

= [tex]\frac{3n^2-7n+15}{(n+3)(n-4)}[/tex]

Therefore, fraction given in option (2) will be the answer.