Respuesta :
Answer:
the required stress level at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa
Explanation:
From the given information; the objective is to compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.
The Critical Stress for a maximum internal crack can be expressed by the formula:
[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]
[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]
where;
[tex]\sigma_c[/tex] = critical stress required for initiating crack propagation
[tex]K_{lc}[/tex] = plain stress fracture toughness = 26 Mpa
Y = dimensionless parameter
a = length of the internal crack
given that ;
the maximum internal crack length is 8.6 mm
half length of the internal crack will be 8.6 mm/2 = 4.3mm
half length of the internal crack a = 4.3 × 10⁻³ m
From :
[tex]Y= \dfrac{K_{lc}}{\sigma_c \sqrt{\pi a}}[/tex]
[tex]Y= \dfrac{26}{112 \times \sqrt{\pi \times 4.3 \times 10 ^{-3}}}[/tex]
[tex]Y= \dfrac{26}{112 \times0.1162275716}[/tex]
[tex]Y= \dfrac{26}{13.01748802}[/tex]
[tex]Y=1.99731315[/tex]
[tex]Y \approx 1.997[/tex]
For this same component and alloy, we are to also compute the stress level at which fracture will occur for a critical internal crack length of 3.0 mm.
when the length of the internal crack a = 3mm
half length of the internal crack will be 3.0 mm / 2 = 1.5 mm
half length of the internal crack a =1.5 × 10⁻³ m
From;
[tex]\sigma_c = \dfrac{K_{lc}}{Y \sqrt{\pi a}}[/tex]
[tex]\sigma_c = \dfrac{26}{1.997 \sqrt{\pi \times 1.5 \times 10^{-3}}}[/tex]
[tex]\sigma_c = \dfrac{26}{0.1370877444}[/tex]
[tex]\sigma_c =189.6595506[/tex]
[tex]\sigma_c =[/tex] 189.66 MPa
Thus; the required stress level at which fracture will occur for a critical internal crack length of 3.0 mm is 189.66 MPa