Respuesta :
Answer:
The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.
Explanation:
The riders will experience a centripetal force from the cylinder
[tex]F_{C}[/tex] = mrω^2   .... equ 1
where
m is the mass of the rider
r is the inner radius of the cylinder = 3.4 m
ω is the angular speed of of the rider
For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as
[tex]F_{f}[/tex] = μR    ....equ 2
where
μ = coefficient of friction = 0.87
R is the normal force from the rider = mg
where
m is the rider's mass
g is the acceleration due to gravity = 9.81 m/s
substitute mg for R in equ 2, we'll have
[tex]F_{f}[/tex] = μmg   ....equ 3
Equating centripetal force of equ 1 and frictional force of equ 3, we'll get
mrω^2 = μmg
the mass of the rider cancels out, and we are left with
rω^2 = μg
ω^2 = μg/r
ω = [tex]\sqrt{\frac{ug}{r} }[/tex]
ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]
ω = 1.58 rad/second
The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s
The riders will experience a  centripetal force from the cylinder
[tex]F = mrw^2[/tex]
where  m is the mass of the rider
r is the inner radius of the cylinder = 3.4 m
ω is the angular speed of the rider
For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as
f = μN
where
μ = coefficient of friction = 0.87
N is the normal force = mg
f = μmg Â
Equating centripetal force of and frictional force of we'll get
[tex]mrw^2 = umg[/tex]
[tex]rw^2 = ug[/tex]
[tex]w^2 = ug/r[/tex]
[tex]w= \sqrt{ug/r}[/tex]
[tex]w= \sqrt{0.87*9.8/3.4}[/tex] Â
ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.
Learn more:
https://brainly.com/question/24638181