Answer:
The right solution will be the "2v".
Explanation:
For something like an object underneath pure rolling the speed at any point is calculated by:
⇒  [tex]v_{rolling}=v_{translational}+v_{rotational}[/tex]
Although the angular velocity was indeed closely linked to either the transnational velocity throughout particular instance of pure rolling as:
⇒  [tex]\omega=\frac{v_{translational}}{r}[/tex]
Significant meaning is obtained, as speeds are in the same direction. Therefore the speed of rotation becomes supplied by:
⇒  [tex]v_{rotational}=\omega \times r[/tex]
On substituting the estimated values, we get
⇒          [tex]=\frac{v_{translational}}{r} \times r[/tex]
⇒          [tex]=v_{translational}[/tex]
So that the velocity will be:
⇒  [tex]v_{rolling}=v+v[/tex]
⇒        [tex]=2v[/tex]