Respuesta :
Answer:
Hello the table which is part of the question is missing and below are the table values
For a 5V belt the available diameters are : 5.5, 5.8, 5.9, 6.2, 6.3, 6.6, 12.5, 13.9, 15.5, 16.1, 18.5, 20.1
Answers:
belt size = 140 in with diameter of 20.1n
actual speed of belt = 288.49 in/s
actual center distance = 49.345 in
Explanation:
Given data :
Electric motor (driver sheave) speed (w1) = 950 rpm
Driven sheave speed (w2) = 250 rpm
pick D1 ( diameter of driver sheave) = 5.8 in ( from table )
To select an appropriate belt size we apply the equation for the velocity ratio to get the diameter first
VR = [tex]\frac{w1}{w2}[/tex] = 950 / 250
also since the speed of belt would be constant then ;
Vb = w1r1 = w2r2 ------- equation 1
r = d/2
substituting the value of r into equation 1
equation 2 becomes : [tex]\frac{w1}{w2} = \frac{d2}{d1}[/tex] = VR
Appropriate belt size ( d2) can be calculated as
d2 = [tex]\frac{w1d1}{w2}[/tex] = [tex]\frac{950 * 5.8}{250}[/tex] = 22.04
From the given table the appropriate belt size would be : 20.1 because it is the closest to the calculated value
next we have to determine the belt length /size
[tex]L = 2C + \frac{\pi }{2} ( d1+d2) + \frac{(d2-d1)^2}{4C}[/tex]
inputting all the values into the above equation including the value of C as calculated below
L ≈ 140 in
Calculating the center distance
we use this equation to get the ideal center distance
[tex]d2< C_{ideal} < 3( d1 +d2)[/tex]
22.04 < c < 3 ( 5.8 + 20.1 )
22.04 < c < 77.7
the center distance is between 22.04 and 77.7 but taking an average value
ideal center distance would be ≈ 48 in
To calculate the actual center distance we use
[tex]C = \frac{B+\sqrt{B^2 - 32(d2-d1)^2} }{16}[/tex] -------- equation 3
B = [tex]4L -2\pi (d2 + d1 )[/tex]
inputting all the values into (B)
B = 140(4) - 2[tex]\pi[/tex]( 20.01 + 5.8 )
B ≈ 399.15 in
inputting all the values gotten Back to equation 3 to get the actual center distance
C = 49.345 in ( actual center distance )
Calculating the actual belt speed
w1 = 950 rpm = 99.48 rad/s
belt speed ( Vb) = w1r1 = w1 * [tex]\frac{d1}{2}[/tex]
= 99.48 * 5.8 / 2 = 288.49 in/s