Respuesta :

Answer:  [tex]-\frac{\sqrt{3}}{2}[/tex]

Explanation:

The identity we'll use is cos(-x) = cos(x) for any value of x.

So cos(-150) = cos(150).

Then locate the angle 150 on the unit circle. The terminal point is [tex]\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)[/tex]

The x coordinate of this terminal point is the value of cos(150).

helox

Answer:

Cos(-150°)=-√3/2

Step-by-step explanation:

-150° is found at the third quadrant so the cost value at third quadrant is negative

Cos(-150°)= -cos(30)=-cos(210)

Cos(-150°)=- (√3/2)

Cos(-150°)=-√3/2

Hope it helps