[tex]\large\displaystyle\sum\limits_{k=1}^{n}{{a_k}}[/tex]The series 25 + 75 + 125 + ... + 775 + 825 can be written using sigma notation.Write an expression for ak in terms of k. And find n

Respuesta :

Answer:

[tex]\large \boxed{\sf \ \ \sum_{k=1}^{17} (-25+50k)=25\cdot 17^2=7225 \ \ }[/tex]

Step-by-step explanation:

Hello,

75 - 25 = 50

125 - 75 = 50

so

[tex]a_0=-25[/tex]

[tex]a_1=-25+50=25[/tex]

[tex]a_n=-25+50n[/tex]

Then we can write

[tex]\displaystyle \sum_{k=1}^n a_k=\sum_{k=1}^n (-25+50k)\\\\=-25\codt \sum_{k=1}^n 1 + 50\cdot \sum_{k=1}^n k\\\\=-25\cdot n+50\cdot \dfrac{n(n+1)}{2}\\\\=\dfrac{-50\cdot n+50\cdot n(n+1)}{2}\\\\=\dfrac{50}{2}(-n+n(n+1))\\\\=25(-n+n^2+n))\\\\=25n^2[/tex]

to note that

[tex]a_{17}=-25+50*17=-25+850=825[/tex]

because

-25 + 50n = 825

<=> 50n = 850

<=> n = 17

Hope this helps.

Do not hesitate if you need further explanation.

Thank you