Respuesta :

Answer:

x=90 degrees and y=41 degrees.

Step-by-step explanation:

In the diagram

[tex]AB=AC\\$Therefore \triangle ABC$ is an isosceles triangle[/tex]

[tex]m\angle C=49^\circ[/tex]

Since ABC is Isosceles

[tex]m\angle B=m\angle C=49^\circ $ (Base angles of an Isosceles Triangle)[/tex]

[tex]m\angle A+m\angle B+m\angle C=180^\circ $ (Sum of angles in a Triangle)\\m\angle A+49^\circ+49^\circ=180^\circ\\m\angle A=180^\circ-(49^\circ+49^\circ)\\m\angle A=82^\circ[/tex]

[tex]m\angle x=90^\circ $(perpendicular bisector of the base of an isosceles triangle)[/tex]

[tex]m\angle y=m\angle A \div 2 $ (perpendicular bisector of the angle at A)\\m\angle y=82 \div 2\\m\angle y=41^\circ[/tex]

Therefore:

x=90 degrees and y=41 degrees.