Answer:
Step-by-step explanation:
[tex]x= 3tan(t) \rightarrow tan(t) = \frac{x}{3} \rightarrow tan^2(t) = \frac{x^2}{9}[/tex]
[tex]y= 2sec(t) \rightarrow sec(t) = \frac{y}{2} \rightarrow sec^2(t) = \frac{y^2}{4}[/tex]
[tex]sec^2(t) -tan^2(t) =1[/tex]
[tex]\frac{y^2}{4} -\frac{x^2}{9} =1[/tex]
is the rectangular equation of the parameter functions.
also, it is a hyperbola. The condition [tex]-\pi/2 < t<\pi/2[/tex] limit x from 0 to infinitive