Respuesta :

Answer:

x=4

Step-by-step explanation:

sqrt(x+5) = sqrt(x)+1

Square each side

(sqrt(x+5))^2 = (sqrt(x)+1)^2

x+5 = (sqrt(x)+1)^2

Foil

x+5 = (sqrt(x)) ^2 + sqrt(x) + sqrt(x) + 1

x+5 = x + 2 sqrt(x) + 1

Subtract x from each side

5 = 2 sqrt(x) + 1

Subtract 1 from each sdie

4 = 2 sqrt(x)

Square each side

4^2 = (2 sqrt(x))^2

16 = 4 x

Divide by 4

16/4 = 4x/4

4 =x

Check to see if it is extraneous

sqrt(4+5) = sqrt(4)+1

sqrt(9) = sqrt(4) +1

3 = 2+1

3=3

It is a valid solution

Answer:

[tex]\boxed{x=4}[/tex]

Step-by-step explanation:

[tex]\sqrt{x+5} = \sqrt{x}+1[/tex]

Take the square on both sides.

[tex]x+5=( \sqrt{x}+1)^2[/tex]

Expand brackets.

[tex]x+5=( \sqrt{x}+1) ( \sqrt{x}+1)[/tex]

[tex]x+5= \sqrt{x} ( \sqrt{x}+1) +1 ( \sqrt{x}+1)[/tex]

[tex]x+5= x+ \sqrt{x}+ \sqrt{x}+1[/tex]

[tex]x+5= x+ 2 \sqrt{x}+1[/tex]

Subtract 2√x, x, and 5 on both sides.

[tex]x- 2 \sqrt{x} -x= 1-5[/tex]

[tex]-2 \sqrt{x} = -4[/tex]

Cancel negative signs.

[tex]2\sqrt{x} = 4[/tex]

Divide both sides by 2.

[tex]\sqrt{x} =2[/tex]

Square both sides.

[tex]x=2^2[/tex]

[tex]x=4[/tex]

Check if the solution in the equation works.

[tex]\sqrt{x+5} = \sqrt{x}+1[/tex]

Let [tex]x=4[/tex]

[tex]\sqrt{4+5} = \sqrt{4}+1[/tex]

[tex]\sqrt{9} = 2+1[/tex]

[tex]3=3[/tex]

The value of x as 4 works in the equation.