The following balanced equation describes the reduction of iron(III) oxide to molten iron within a blast furnace: Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. What is the theoretical yield of liquid iron, in grams? Just enter a numerical value. Do not enter units.

Respuesta :

Answer:  313.6

Explanation:

To calculate the moles :

[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]    

[tex]\text{Moles of} Fe_2O_3=\frac{450g}{160g/mol}=2.8moles[/tex]

[tex]\text{Moles of} CO=\frac{260g}{28g/mol}=9.3moles[/tex]

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]

According to stoichiometry :

1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex]  of [tex]CO[/tex]

Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.

As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]

Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]

Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]

Theoretical yield of liquid iron is 313.6 g