Respuesta :

Answer:

[tex]AB = \frac{11}{2}[/tex]

Step-by-step explanation:

Given

The above diagram

[tex]AB = 3y + 4[/tex]

[tex]AC = 11y[/tex]

Required

Determine length AB

Tangents drawn from the same point of a circle are equal;

This implies that

[tex]AB = AC[/tex]

Substitute values for AB and AC

[tex]3y + 4 =11y[/tex]

Subtract 3y from both sides

[tex]3y - 3y + 4 = 11y - 3y[/tex]

[tex]4 = 8y[/tex]

Divide both sides by 8

[tex]\frac{4}{8} = \frac{8y}{8}[/tex]

[tex]\frac{4}{8} = y[/tex]

[tex]\frac{1}{2} = y[/tex]

Substitute [tex]\frac{1}{2}[/tex] for y in [tex]AB = 3y + 4[/tex]

[tex]AB = 3 * \frac{1}{2} + 4[/tex]

[tex]AB = \frac{3}{2} + 4[/tex]

[tex]AB = \frac{3 + 8}{2}[/tex]

[tex]AB = \frac{11}{2}[/tex]