Respuesta :

Answer:

tanФ = 2.6363636

Step-by-step explanation:

To find the tangent of the angle in-between the lines we will follow the steps below:

We are going to use the formula;

tanФ = |m₂ - m₁  / 1 + m₁m₂|

We can get the slope m₁ from the first equation

2x+3y–5=0

we will re-arrange it in the form y=mx + c

3y = -2x + 5

Divide through by 3

y = -[tex]\frac{2}{3}[/tex]x + [tex]\frac{5}{3}[/tex]

comparing the above equation with y=mx + c

m₁ =  -[tex]\frac{2}{3}[/tex]

We will proceed to find the second slope m₂ using the second equation

5x=7y+3

we will re-arrange it in the form y=mx + c

7y = 5x -3

divide through by 7

y = [tex]\frac{5}{7}[/tex] x -  [tex]\frac{3}{7}[/tex]

comparing the above with y=mx + x

m₂ = [tex]\frac{5}{7}[/tex]

we can now go ahead and substitute into the formula

tanФ = |m₂ - m₁  / 1 + m₁m₂|

tanФ = | [tex]\frac{5}{7}[/tex] -  (-[tex]\frac{2}{3}[/tex] ) / 1 +  (-[tex]\frac{2}{3}[/tex]₁)( [tex]\frac{5}{7}[/tex])|

tanФ = | [tex]\frac{5}{7}[/tex] +[tex]\frac{2}{3}[/tex]  / 1 -  [tex]\frac{10}{21}[/tex]|

tanФ = | [tex]\frac{29}{21}[/tex] / [tex]\frac{11}{21}[/tex]|

tanФ = | [tex]\frac{29}{21}[/tex] × [tex]\frac{21}{11}[/tex]|

21 will cancel-out 21

tanФ =[tex]\frac{29}{11}[/tex]

tanФ = 2.636363