Respuesta :
Step-by-step explanation:
new numbers are x+4 and x-1
so, x+4/x-1=11/16
16x+64=11x-11
16x-11x=-11-64
5x=-75
x = -15
also, x+1 = -14
x =first number
x+1 = second number
(x) + 4 = x + 4 = 1 ^ new number [first number + 4]
(x + 1) -2 = x - 1 = 2 ^ new number [second number - 2]
[tex]\frac{x+4}{x-1}=\frac{11}{16}[/tex]
now, we resolve it:
[tex]\frac{16(x+4)-11(x-1)}{16(x-1)}=0[/tex]
[tex]\frac{16x+64-11x+11}{16x-16}=0[/tex]
[tex]\frac{5x+75}{16x-16}=0[/tex]
we eliminate the denominator and do c.e.: 16x - 16 ≠0; 16x ≠16; x ≠1
5x + 75 = 0
x = - 15
so x + 1 = - 14
But what you ask are two positive numbers! Are you sure that you write correctly the question? Thank you