A long, straight wire of radius R carries a steady current I that is uniformly distributed through the cross section of the wire. Calculate the magnetic field a distance r from the center of the wire in regions r ≥ R and r < R.

Respuesta :

Answer:

a

  When [tex]r \ge R[/tex]

      [tex]B = \frac{ \mu_o * I}{ 2 \pi r }[/tex]

b

 When [tex]r< R[/tex]

   [tex]B = [\frac{\mu_o * I }{ 2 \pi R^2} ]* r[/tex]

Explanation:

From the question we are told that

   The  radius is  R  

   The  current is  I

    The  distance from the center

Ampere's law is mathematically represented as

       [tex]B[2 \pi r] = \mu_o * \frac{I r^2 }{R^2 }[/tex]

      [tex]B = \frac{ \mu_o}{2 \pi } * \frac{r}{R^2}[/tex]

When [tex]r \ge R[/tex]

=>     [tex]B = \frac{ \mu_o * I}{ 2 \pi r }[/tex]

But when [tex]r< R[/tex]

   [tex]B = [\frac{\mu_o * I }{ 2 \pi R^2} ]* r[/tex]