Respuesta :

Answer:

Area = 18 square units

Step-by-step explanation:

To find the area of the triangle, let's go through the following steps:

(i) Let the vertices be;

A = (7, -3)

B = (4, -3)

C = (4, 9)

(ii) The sides of the triangle are therefore,

AB, BC and CA

(iii) Using the distance formula, calculate the lengths of AB, BC and CA

[tex]AB = \sqrt{(7-4)^2 + ( -3 - (-3))^2}[/tex]

[tex]AB = \sqrt{3^2 + (0)^2}\\[/tex]

[tex]AB = \sqrt{9}[/tex]

[tex]AB = 3[/tex]

[tex]BC = \sqrt{(4-4)^2 + ( -3 - 9)^2}[/tex]

[tex]BC = \sqrt{0^2 + (-12)^2}[/tex]

[tex]BC = \sqrt{144}[/tex]

[tex]BC = 12[/tex]

[tex]CA = \sqrt{(4-7)^2 + ( 9 - (-3))^2}[/tex]

[tex]CA = \sqrt{(-3)^2 + (12)^2}[/tex]

[tex]CA = \sqrt{9 + 144}[/tex]

[tex]CA = \sqrt{153}[/tex]

[tex]CA = 12.4[/tex]

(iv) Now that we have all the sides, let's calculate the area of the triangle using the Heron's formula.

Area = [tex]\sqrt{p(p-a)(p-b)(p-c)}[/tex]

Where;

p = [tex]\frac{a + b + c}{2}[/tex]

a, b and c are the sides of the triangle.

In our case,

let

a = AB = 3

b = BC = 12

c = CA = 12.4

∴ p = [tex]\frac{3 + 12 + 12.4}{2}[/tex]

p = 13.7

Area = [tex]\sqrt{p(p-a)(p-b)(p-c)}[/tex]

Area = [tex]\sqrt{13.7(13.7-3)(13.7-12)(13.7-12.4)}[/tex]

Area =  [tex]\sqrt{13.7(10.7)(1.7)(1.3)}[/tex]

Area =  [tex]\sqrt{323.9639}[/tex]

Area  = 17.999

Area = 18 square units

OR

To get the area of the triangle, we can use a much simpler approach.

Since the triangle is a right triangle,

(i) the hypotenuse, which is the longest side is CA = 12.4

(ii) the other two sides are AB and BC. These two sides will form the right angle.

Therefore, we can use the relation:

Area = [tex]\frac{1}{2}[/tex] x base x height

Where;

the base or height can either be AB or BC

Area = [tex]\frac{1}{2}[/tex] x 3 x 12

Area = 18 square units

PS: In a right triangle, the other two sides apart from the hypotenuse form the right angle.